It is enough to look at the last numbers in the numbers we multiply. We have $10$ factors of each last digit except $0$ and $5$. It is thus equivalent to finding the last number in $1 ^ {10} \cdot 2 ^ {10} \cdot 3 ^ {10} \cdot 4 ^ {10} \cdot 6 ^ {10} \cdot 7 ^ {10} \cdot 8 ^ {10} \cdot 9 ^ {10}$. By prime factoring the composite numbers $4$, $6$, $8$ and $9$ we can rewrite this product as:
$1 ^ {10} \cdot 2 ^ {10} \cdot 3 ^ {10}$$ \cdot (2 ^ 2) ^ {10} \cdot (2 \cdot 3) ^ {10} \cdot 7 ^ {10}$$ \cdot (2 ^ 3) ^ {10} \cdot (3 ^ 2) ^ {10} $
Which can be rewritten as:
$ 2 ^ {10} \cdot 3 ^ {10} \cdot 2 ^ {20}$$ \cdot 2 ^ {10} \cdot 3$$ ^ {10} \cdot 7 ^ {10} \cdot 2 ^ {30}$$ \cdot 3 ^ {20} $
Which is the same as:
$ 2 ^ {10 + 20 + 10 + 30}$$ \cdot 3 ^ {10 + 10 + 20}$$ \cdot 7 ^ {10} $
$$ 2 ^ {70} \cdot 3 ^ {40} \cdot 7 ^ {10} $$
With the method used on previous exercises, this has the same last digit as $4 \cdot 1 \cdot 9 = 36$, so $\mathbf {6}$.
You might think this is a lot of work. Let's compare with computing the whole number. $N = 99 \cdot 98 \cdot 97 \cdot 96 \cdot 94 \ldots 12 \cdot 11 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ can be calculated with a computer.
The result is:
$$402234160506493032707377206263$$5644006682631073129026$$
$$065791147313105354118998768752$$4553179375700208519702$$
$$5628490126455918821376$$